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AN ANALYSIS OF A FIRST-ORDER POLYNOMIAL 

PREDICTOR FOR DATA  COMPRESSION^ 
By M. Melvin Bruce 

Langley Research Center 

SUMMARY 

A theoretical analysis is presented of a first-order polynomial predictor for use in 
data compression. 
in the form of samples taken at a constant rate. 
having a Gaussian distribution of amplitude. 
different amplitude spectra are compared by using this method. 
used to generate data approximating the four time histories and to measure the compres- 
sion possible in the generated data for comparison with the theoretical calculations. 

The investigation is concerned with compressing data which existed 
This analysis is also limited to data 

Four pseudo-random time histories with 
A digital computer w a s  

The results of this investigation show that, under known conditions, it is possible to 

This investigation also shows that high frequencies in 
calculate the amount of data compression which can be obtained through the use of a 
first-order polynomial predictor. 
the data reduce the amount of compression and that there is a trade-off between the 
amount of e r ro r  introduced by the compression system and the amount of compression 
obtained. This method of analysis is limited to  data with known statistics. 

INTRODUCTION 

Compression of sampled data is defined as the reduction in the total number of 
samples required for the reconstruction of the original data within a given accuracy. 
One of the techniques for compressing data is the application of polynomial prediction. 
The amplitude of a given sample is predicted as a function of the previous samples. 
order of the prediction scheme indicates the order of the polynomial equation and the 
number of previous samples used for prediction. A zero-order polynomial predictor 
uses only one previous sample and predicts that the succeeding sample will have the 
same amplitude as the previous sample. 
previous samples to generate amplitude and slope information for its prediction. 

The 

A first-order polynomial predictor uses two 

~~ ~ 

lThe information presented herein was  offered as a thesis in partial fulfillment of 
the requirements for the degree of Master of Electrical Engineering, University of 
Virginia, Charlottesville, Virginia, August 1965. 



Among those actively conducting research in this area are Gardenhire (ref. 1) and 
Medlin (ref. 2). 
making compression measurements on data from actual telemetry systems or on arti- 
ficially generated data. There has been a scarcity of work directed toward calculating 
the amount of compression possible by polynomial prediction from the statistics of the 
data. Hochman in reference 3 analyzed theoretically the compression by a zero-order 
polynomial predictor. The purpose of the present investigation is to analyze theoreti- 
cally the first-order polynomial predictor for data compression, using Hockman's tech- 
niques as an outline, and to compare these results with actual measurements on data 
simulated by a computer. The first-order polynomial predictor was analyzed by using 
assumed statistics for the data and by solving a random walk problem. 

Their work has been essentially experimental and has consisted in 

The results of this investigation show that the amount of data compression for a 
first-order polynomial predictor can be calculated by using the statistics of the data. 
This method should be a useful tool to  a designer contemplating the use of first-order 
polynomial prediction for data compression. 

SYMBOLS 

CR compression ratio 

E (x) expected value 

F(w) amplitude spectrum 

f m maximum frequency component 

f S sampling frequency 

K tolerance limit as a function of 0 

ki amplitude of frequency component 

L11,L12;L21,L22. . .  plus and minus tolerance l imits 

matrix 

determinant of matrix 

I IMI I 
lMl llMll 

Mij cofactor of determinant 11111 

n 

P(X) probability density function 

2 

number of samples since a change in the reference samples 
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U 

xn 

Zn 

A 

P 

a 

a2 

wm 

time 

difference between A's  

amplitude of nth sample 

difference between actual amplitude and predicted amplitude 

difference in amplitude between adjacent samples 

correlation coefficient 

standard deviation 

variance 

time displacement 

moment generating function 

angular ra te  in radians per second 

maximum angular ra te  

THEORETICAL ANALYSIS O F  A FIRST-ORDER POLYNOMIAL PREDICTOR 

In general, a first-order polynomial predictor performs a prediction of the ampli- 

The particular f irst-order predictor to be considered 
tude of a given sample by using information on both amplitude and slope that has been 
obtained from previous samples. 
herein uses two adjacent samples to predict the amplitude of succeeding samples. 
general equation for this type of prediction is: 

The 

1) xn = x1 + (n - l)(xz - 
In this analysis the samples are assumed to be evenly spaced in time. 

Figure 1 shows the operation of the first-order polynomial predictor in data com- 
pression. The curve in figure 1 is an amplitude-time plot of the input data. The data 
have been sampled at a rate f s  and the samples have an amplitude xm Two adjacent 
samples, x1 and x2, a r e  chosen as the first reference samples. A reference line is 
drawn between the two points; predicted amplitudes of future samples will fall along this 
line. Allowable tolerance limits, L11 and L12, are placed on either side of the ref- 
erence line. All succeeding samples are discarded until a sample falls outside the tol- 
erance band. In figure l the first sample to fall outside the tolerance band is the fifth 
sample. When this phenomenon occurs, the previous sample, x4, is used in conjunction 
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with x5 to generate a new reference line. 
may be reconstructed by joined straight line segments. 
reconstructed data due to the compression is one-half the width of the tolerance band. 

The previous sample is used so that the data 
The maximum e r r o r  in the 

In order to  analyze the first-order predictor theoretically, the following assump- 
tions are made: 

(1) The power density spectrum of the data is known. 

(2) The probability density of the amplitude of the data is Gaussian with a mean of 
zero and a standard deviation of u. 

(3) The sampling rate is greater than twice the highest frequency present in the 
data. 

As assumption (2) shows, this analysis is concerned only with the Gaussian distribution 
of amplitudes. However, the method could be applied td other probability distributions. 

The compression ratio is defined as the total number of samples handled divided 
by the number of samples retained. The retained samples a r e  the two adjacent samples 
which are used to generate the reference line. The method'of analysis is similar to that 
of Hochman (ref. 3). 
order to find the average number of samples required to reach one of the tolerance 
limits. This number is the average number of samples handled, and the number of sam- 
ples retained is two. Therefore, the theoretical compression ratio is one-half the aver- 
age number of steps to the boundary. 

The problem is approached by solving a random walk problem in 

The difference in amplitude between the actual amplitude of the nth sample and the 
predicted value of the nth sample is 2,. In appendix A, 2, is found to be 

where 

and Ai+l is the difference in amplitude between samples xi+2 and xi+l. 

function for four variables, p(x1,x2,xn+l,xn+$ If 
The probability density for Un can be found by using a joint probability density 

~2 - A 1  = X I  
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According to reference 4 (p. 36), 

Then, let 

Since 

0 Discarded simples 
Retained samples 

/ 
/ / 

1~31 0 / 

-- - - - - _  

1 
/ 

/ 

Id1 2 

Time 

Figure 1.- A first-order polynomial predictor. 
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The probability density function for Un is derived in appendix B and is found to be a 
Gaussian density function with mean equal to zero. 

In reference 5, Blackwell and Girshick solve a problem in sequential analysis, 
which is in essence a random-walk problem. Appendix C presents this solution, in the 
notation used herein, to obtain the expected value of Zn2: 

. where 02 is the variance of the amplitude of the data and 

the quantities L11 and L12 a r e  the plus and minus tolerance limits. By the definition 
of Z, together with the definition for the second moment (ref. S ) ,  

where CJ 2 is the variance of Ui and where i is never equal to j. In this analysis 

it is assumed that 
U1 

This assumption is considered reasonable since the expected value of UiUj may be 
either positive or negative. 
lation between Ui and Uj for i # j .  

and (2) for E(Zn2) are equated, 

This relationship, in effect, assumes that there is no corre-  

If the plus and minus tolerance limits a r e  assumed to be equal and equations (1) 
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n 
K2u2 = 1 uu: 

i= 1 

The n in equation (3) is the average number of steps to one of the tolerance limits. It 
has  already been determined that the compression ratio CR is 

However, it is not possible to solve for the compression ratio explicitly as a function of 
K, but it is possible to solve for K as a function of CR 

The values of au2 w e r e  calculated from the equation obtained in appendix B for various 

values of i. These values were then used to compute K as a function of CR. 
i 

Figure 2 is a plot of the theoretical compression ratio for a first-order predictor 
operating on four types of input data. In this figure the sampling rate was 5 t imes the 
cutoff frequency of the data. The abscissa is K, the allowable tolerance limit expressed 
in te rms  of a, which is the standard deviation of the amplitude of the data. 

The amplitude spectra for the four types of input shown in figure 2 are: 

L spectrum: 

F(w) = k l  

F(w) = 0.01kl 

F(w)  = 0 (For other values of o) 
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Exponential spectrum: 

Triangular spectrum: 

Rectangular spectrum : 

F(w) = 0 

F(w) = k3(l - IWI ) 
wm 

F(w) = 0 

F(w) = k4 

(For other values of w )  

(For 0 5 I w ~  5 Wm) 

(For other values of w )  

(For 0 5 Iw1 5 wm) 

F(w) = 0 (For other values of w )  

Figures 3, 4, 5, and 6 show the amplitude spectra and the correlation coefficients 
fo r  the four types of input. The abscissa for the correlation coefficient is the displace- 
ment n expressed as a multiple of the number of samples away from the first refer- 
ence sample with the sampling rate being five t imes the maximum frequency in the data. 
For example, the correlation between adjacent samples, taken at the given sampling 
rate, is found from the curves at a displacement equal to  one. 
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Figure 2.- Theoretical compression ratio for a first-order predictor. 
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Figure 3.- Correlation coefficient for  L spectrum. 
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Figure 4.- Correlation coefficient for exponential spectrum. 
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Figure 5.- Correlation coefficient for t r iangular spectrum. 
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Figure 6.- Correlation coefficient for  rectangular spectrum. 
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EXPERIMENTAL PROCEDURE 

Since all experimental work involved sampled data, a breadboard model of the 
first-order predictor for data compression would have been a special purpose digital 
computer. 
all experimental work was performed on a digital computer located at the Langley 
Research Center. 

For this reason no breadboard model of the predictor was constructed, but 

Data were generated by computer approximations of the characteristics used in 
the theoretical analysis. 
the amount of compression obtainable by a first-order predictor as a function of the 
width of the tolerance band K. 

These data were then examined by the computer to determine 

The procedure used for generating the data with the desired characteristics was 
as follows: 

(1) Pseudo-random numbers were generated by approximating a Gaussian proba- 
bility density with mean of zero, variance of one (refs. '7 and 8), and a flat amplitude 
spectrum. 

(2) Numerical filtering (ref. 9) by use of weighting functions and a convolution 
transformed the flat amplitude spectrum into that of the four spectra used in the theo- 
retical analysis. 

These two steps gave a sequence of numbers for each of the four spectra. E this 
sequence of numbers is taken to be a sequence of samples of a continuous function, the 
continuous function would have a probability density approximating a Gaussian probabil- 
ity density function and amplitude spectra approximating that of one of the four spectra. 

The procedure used for measuring the compression possible on the data generated 
by a first-order predictor was as follows: 

and x2, of the sequence were used to find the slope (1) The first two samples, x1 
of the reference line, AI: 

(2) The predicted value of x3 is x2 + AI. 
(3) The difference in the actual value of x3 and the predicted value was calculated. 

If this difference was less than the width of the tolerance band, the sample was considered 
redundant. The amplitude of x4 was then predicted by x2 + 2A1. This process was 
continued until the difference in actual and predicted value of a sample was  greater than 
the width of the tolerance band. 
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(4) When a nonredundant sample w a s  located, the computer returned to  step (1) 
with the nonredundant sample as x2 and the previous sample as XI. 

be nonredundant. The compression ratio is the total number of samples divided by twice 
the number of retained samples. 

(5) A record was kept of the number of samples examined and the number found to 

RESULTS 

The simulated data generated by the computer was a sequence of 5000 numbers. 
The autocorrelation of the pseudo-random numbers was calculated to check the random- 
ness of the numbers. At all nonzero displacements, the autocorrelation was found to be 
l e s s  than 3 percent of the value at zero  displacement. Figure 7 is a plot of the first one 
hundred points of the pseudo-random data before being filtered. Figures 8, 9, 10, and 11 
show the data after being filtered to conform to the spectral requirements of the four 
different inputs. These figures, as expected, show that the data having the rectangular 
spectrum has the greatest content of high frequencies. 

. .  . .  
10 . 20 ' 30 40 50 t 80 90 100 

T i m e  

Figure 7.- Random data. Gaussian density before filtering. Mean, 0.000849; 
standard deviation, 1.003534. 
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Figure 8.- Random data. Gaussian density w i th  L-spectrum fi lter. Mean, 0.004785; 
standard deviation, 0.943357. 
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Figure 9.- Random data. Gaussian density wi th exponential-spectrum fi lter. Mean, 0.003667; 
standard deviation, 0.966783. 
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Figure 10.- Random data. Gaussian density w i th  tr iangular-spectrum filter. Mean, 0.002235; 
standard deviation, 0.987779. 
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Figure 11.- Random data. Gaussian density w i th  rectangular-spectrum filter. Mean, 0.001498; 
standard deviation, 0.989968. 
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The amplitude spectrum was measured from the actual data in order to make a 
Figures 12, 13, 14, and 15 show both theo- 

It can be observed from 
comparison with the theoretical spectra. 
retical and measured amplitude spectra for the four inputs. 
these figures that the actual amplitude spectra have the general shape of the theoretical 
spectra. The difference in the two curves is due to  the fact that numerical integration 
was used in filtering the data with only forty-one points used to approximate the ampli- 
tude spectra. 
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Figure 12.- Amplitude spectrum for L-spectrum filter. 
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Figure 13.- Amplitude spectrum for exponential-spectrum filter 
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Amplitude spectrum for rectangular-spectrum rilter. Figure 15. 
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The data were also checked to insure 
that the amplitude distribution followed a 
Gaussian probability curve. Figure 16 is a 
plot of the cumulative relative frequency of 
the random data before filtering, which has 
been plotted on Gaussian probability paper. 
If the data do have a Gaussian distribu- 
tion, the points will form a straight line. 
The random data before and after filtering 
were found to approximate Gaussian distrib- 
uted data out to approximately *2.5~. Fig- 
u re s  17, 18, 19, and 20 are the plots of the 
cumulative frequency for the data after it 
had been filtered according to the require- 
ments of the four spectra. 

Figure 21  shows the measured com- 
pression ratio as a function of the width of 
the tolerance band for the first-order pre- 
dictor. The measured values of the com- 
pression do not agree exactly with the theo- 
retical values. However, the theoretical 
and actual compression ratios have the 

- 4  - 3  - 2  - 1  0 1 2 3 4 
S a m p l e  a m p l i t u d e  

Figure 16.- Random data before fi l tering. 

same shape, general range of values, and response to the four types of input data. 
the theoretical and measured curves show that the presence of high frequencies in the 
data reduces the amount of data compression which can be obtained. It is anticipated 
that the differences between the measured and theoretical compression ratios might be 
reduced by using data which more closely approximate the theoretical data. However, 
the results obtained herein a r e  sufficient for comparison with theoretical results. 

Both 

It can be seen from the curves in figures 2 and 21 that there is a tradeoff between 
the amount of compression and the width of the tolerance band. As the compression 
system is allowed to introduce more e r r o r  with sample rate held constant, the amount 
of compression is increased. 
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S a m p l e  a m p l i t u d e  

Figure 17.- Random data, L-spectrum filter. Figure 18.- Random data, exponential-spectrum fi lter. 

- 4  - 3  - 2  - 1  0 1 2 3 4 
S a m p l e  a m p l i t u d e  

Figure 19.- Random data, triangular-spectrum filter. Figure 20.- Random data, rectangular-spectrum filter. 
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Figure 21.- Actual compression ratio. 
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CONCLUDING REMARKS 

The results of this investigation have shown that it is possible under some condi- 
tions to calculate the amount of data compression which can be obtained by using a first- 
order polynomial predictor. This method is limited to the cases in which the statistics 
of the data are known; that is, the amplitude spectrum and the probability distribution of 
amplitudes are known. 
Gaussian probability distribution simply for mathematical convenience but could be 
extended to other probability distributions. This investigation has also shown that there 
is a tradeoff between the amount of e r r o r  introduced by the compression system and the 
amount of compression obtained. 

This investigation has been concerned only with data having a 

The methods of analysis presented should be useful as a basis for the extension of 
theoretical analysis to other types of first-order predictors and to data with other types 
of probability distributions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 27, 1966, 
125-21-02-04-23. 
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APPENDIX A 

DERIVATION O F  THE EQUATION FOR THE DISTANCE FROM THE 

PREDICTED VALUE IN A FIRST-ORDER SYSTEM 

Definitions of quantities required for derivation of an equation for the distance 
from the predicted value in a first-order system are as follows: 

X i  amplitude of the ith sample 

Ai  difference in amplitude of the (i + 1) sample and the ith sample; that is, 
A i  = xi+l - X i  

. 
reference difference; A 1  = x2 - x1 A1  

Ui difference in amplitude of the (i + 1) difference and the reference difference; 

Ui  = Ai+1 - A 1  

n number of samples beyond the second reference sample; that is, n = i - 2 

difference in amplitude between the actual sample and the predicted value of Zn 
the nth sample; that is, Zn = xn+2 - [XI + (n + 1 ) A d  

From these definitions, 
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APPENDIX B 

DERIVATION O F  THE PROBABILITY DENSITY OF Un 

If XI, x2, xn+i, and ~ n + 2  a r e  variables with Gaussian probability densities 
and each has a mean of zero and a standard deviation of a, 

and the joint probability density function for four variables is (ref. 10) 

r 4 1 

In the preceding equation, [MI is the determinant of the matrix llMll. 

d21 d22 d23 d24 

d31 d32 d33 d34 
(IM(I = Matrix 

in which 

dij = E(xixj) 

and the Mij 's  a r e  the cofactors of the determinant. The coefficient p(1) is the cor- 
relation coefficient between samples which are separated by one sample time (XI and x2, 
Xn+l and xn+2); p(n - 1) is the correlation coefficient between samples which are 
separated by (n - 1) sample times (x2 and xn+1); p(n) is the correlation coefficient 
between samples which are separated by n sample t imes (XI and xn+1, x2 and 
xn+2); and p(n + 1) is the correlation coefficient between samples which a r e  separated 
by (n + 1) sample t imes (XI and xn+2). Therefore, 
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llMll = 

fl  

M11 = M44 = u6 1 + 2p(l)p(n - l)p(n) - ~ ( 1 ) ~  - p(n - 1)2 - ~ ( n ) ~ ]  1 
M12 = M21 = M34 = M43 = &L(n)p(n + 1) + p ( u 3  + p(n - l)p(n) - p(1) - p(l)p(n)2 

- p(l)p(n - 1 M n  + 1J 

M22 = M33 = 86 + 2p(l)p(n)p(n + 1) - p(n + 1)2 - ~ ( 1 ) ~  - p(n)2] 



APPENDIX B 

Let x1 = x 2  - AI. Then 

where 

H3 = 2 2M13 + Mi4 + M24 1 
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APPENDIX B 

where 

4H3[(M11 + M12)(M12 M22) + (M13 + M23)(M13 + M14)l 

From the previous equation for p(Un), 
bility density with a mean of zero  and a variance of 

Un can be observed to have a Gaussian proba- 

The two expressions for the variance result from the fact that the variance appears in 
two places in the equation for the normal probability density function. 
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APPENDIX C 

. A RANDOM WALK PROBLEM WITH ABSORBING BOUNDARIES 

In order to find the average number of steps required to reach either the plus or 
minus boundary in the first-order predictor, a random walk problem with absorbing 
boundaries (ref. 5) is solved. The expected value of Z ,  the difference between the 
actual value of the sample and the predicted value, is 

E(Zn) = nE(U) 

if 

At the time when the data reach one of the boundaries, 
let q equal the probability that Zn 2 -L12; therefore, (1 - q) is the probability that 

Zn = -L12 or Zn = L11, 

Zn Z L11. 

Let qz(t) be the moment-generating function of Zn (ref. 6). 

Assume that the length of the step is small compared with the distance to the boundary. 
This assumption, in effect, means that the first sample to occur outside the boundary 
will occur exactly on the boundary and that when the boundary is crossed, 
one of two values, L11 or -LIZ. Since by definition (ref. 6), 

Zn can have 

Select t = tu so  that 
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APPENDIX C 

Because of the assumption that Zn can be either L11 or -L12 at the boundaries, 

For t, = 0, this equation is indeterminate and must be solved by using L'Hospital's rule. 

L11 + L12 - L12 - - L11 q =  
L11 + L12 L11 'L12 

Inserting this expression for q (eq. (C2)) into the equation for E(Zn2) (eq. (Cl)) yields 
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